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To model the possible formation of coupled spatial corrugations and charge density modulations in lamellar
DNA-lipid complexes, we use a free energy functional which includes the electrostatic, lipid mixing, and
elastic degrees of freedom in a self-consistent manner. We find that the balance of forces favors membrane
corrugations that are expected to be stable with respect to thermal membrane undulations for a certain range
of lipid (charged and uncharged) composition. This may lead to locking between DNA strands in adjacent
galleries of the complex. Furthermore, the possibility of membrane corrugations renders the lamellar complex
more stable with respect to another, hexagonal, DNA-lipid phase.

1. Introduction

The condensed complexes formed between DNA and cationic
lipids, also known as “lipoplexes”, have attracted much attention
in recent years, mainly because of their potential use as nonviral
transfection vectors for gene therapy.1-3 Lipoplexes are formed
spontaneously in aqueous solutions upon mixing DNA and
liposomal lipid bilayers composed of cationic lipids (CL),
electrically neutral, “helper” lipids (HL), and possibly additional
molecules such as cholesterol. Detailed structural measurements,
primarily X-ray, freeze fracture electron microscopy, and cryo-
transmission electron microscopy (cryo-TEM) studies, reveal
two major lipoplex geometries: lamellar (LR

C) and hexagonal
(HII

C).3-8 The lamellar complexes are smectic-like arrays of
stacked lipid bilayers with monolayers of DNA molecules,
oriented parallel to each other, intercalated within the intervening
water gaps. The hexagonal complexes consist of an inverse-
hexagonal lipid phase, with DNA “rods” intercalated within their
cylindrical aqueous tubes. These hexagonal, or “honeycomb”
complexes, may also be depicted as a super-lattice of hexago-
nally packed “monolayer coated DNA” units. A third (“spaghetti-
like”) lipoplex geometry consists of a single (double stranded
or supercoiled) DNA enveloped by a lipid bilayer. Theory
suggests that this structure is metastable with respect to the
hexagonal geometry.9

From a physicochemical viewpoint, lipoplex formation
provides one of the most striking examples of macroion
association in solution, featuring rich and theoretically chal-
lenging phase and structural behaviors. For instance, it has been
unequivocally demonstrated, both theoretically and experimen-
tally, that the spontaneous association of DNA and CL/HL
bilayers is driven by the entropic gain associated with the release
into the bulk solution of the counterions previously bound to
these, oppositely charged, macroions.10-12 Consistent with this

conclusion, it was found that the complexes are maximally stable
at theisoelectric point, where the total surface charges on the
DNA and lipid layers are equal in magnitude, enabling perfect
charge matching and hence maximalcounterion release, just
as in the interaction between two infinite, oppositely charged
planar surfaces.10,11,13-15

Lipoplex formation highlights all of the unique properties of
lipid membranes, namely, their beingself-assembledtwo-
dimensionalfluid mixtures, flexible with respect to curvature
deformations. These properties are generally coupled to each
other. For instance, simultaneous charge-curvature modulations
appear to play an important role in the undulation behavior of
mixed lipid bilayers.16 Similarly, this coupling affects the
adhesion characteristics of two apposed membranes or a
membrane to a surface. Membrane elasticity, fluidity, and self-
assembling properties of lipids play a crucial, generally syner-
gistic, role in the interaction between lipid bilayers and
biopolymers such as DNA and proteins. For example, the
formation of hexagonal lipoplexes from DNA and planar
bilayerscould only happen because the lipids constituting the
bilayer can reassemble in the hexagonal symmetry. The elastic
properties of the lipids govern the preferred complex geometry.
For instance, it is well-known, and understood, that “soft” lipid
bilayers (characterized by small bending rigidity,κ ≈ kBT) tend
to form HII

C rather than LR
C complexes, because the former

enable better electrostatic matching. The preferred geometry can
also be controlled by tuning the sponatenous curvature (c0) of
the HL/CL mixture; for example, the helper lipid DOPE
(dioleoylphosphatidylethanolamine) possesses negative spon-
taneous curvature, thus favoring the HII

C phase.3,9,17

Being a 2D fluid mixture, the lipid membrane allows its
constituent molecules to diffuse within the membrane plane,
enabling them to respond to interactions with neighboring
macromolecules throughlocal changes in composition. In
particular, the cationic lipids in the LR

C complex tend to
redistribute in the bilayer plane so as to locally match the charge
density on the DNA strands, as illustrated in Figure 1a, and
corroborated experimentally.18 It should be noted that this
electrostatically induced modulation in lipid composition is
partially inhibited by the concomitant loss of 2D mixing entropy.
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The ultimate “annealed” composition profile reflects a balance
of these opposing tendencies.

As noted above, very “soft” (lowκ) or “curvature-loving”
(negative c0) lipid mixtures will typically prefer the high
curvature of the hexagonal complex over the planar geometry
of the lamellar complex. Moderately soft bilayers (κ ≈ 10kBT)
will generally prefer the planar symmetry of the LR

C complex
but may nevertheless develop sizable curvature modulations,
as depicted in Figure 1a. These membrane corrugations provide
partial enveloping of the DNA rods by the lipid bilayer (thus
improving the electrostatic matching) provided of course that
the local change in membrane curvature is “in-phase” with a
local variation in membrane charge density. In other words, the
curVature and lipid compositioncorrugation profiles are inti-
mately coupled to each other and dictated, as usual, by the
requirement for a global minimum of the complex’s free energy.

Our goal in this work is 2-fold. First, to show how the
coupling between the bilayer’s lipid composition and curvature
degrees of freedom is reflected in the interaction free energy of
a macroion-membrane system. The second is to examine the
consequences of this coupling with respect to the structure,
stability and phase behavior of the LR

C complex. Our approach
is based on an extension of a unified theoretical scheme allowing
for the explicit inclusion of lipid mobility effects (and hence
local demixing) in the electrostatic free energy of membrane-
macroion system, such as the LR

C complex, or a “protein-
dressed” membrane.12,19Fleck et al.20 have recently shown that
the electrostatic free energy may be further generalized so as
to include the effects of ionizable (i.e., not fully ionized) lipid
headgroups. In their study, as in our previous work, the lipid
bilayers were treated as perfectly planar. In the present work,
as we have just stressed, we explicitly allow for curvature
modulations.

Membrane corrugation, as schematically illustrated in Figure
1a, suggest the possible appearance of spatial correlations
between monolayers of DNA in neighboring “galleries”. Cryo-
TEM studies of the LR

C phase seem to support this notion.5

Similarly, X-ray measurements clearly indicate correlated
curvature-charge corrugation and 3D registry between galleries
in an LR

C complex. However, the lipid layers in this experi-
ments were in their crystalline (“gel”) phase.21 Further support
for the possible appearance of membrane corrugations is
provided by computer simulations of the lamellar complex.22

When the amplitude of membrane corrugation is small, there
is no a priori reason for spatial “locking” of DNA monolayers
belonging to different galleries. Yet, even in the absence of
membrane troughs, DNA rods in adjacent galleries may be
correlated with each other through other interaction mechanisms.
It is also possible that, while positional correlations between
DNA rods in neighboring galleries no longer exist, orientational
correlations are preserved. The possible appearance of this rather

special “sliding phase” has attracted considerable theoretical and
experimental attention.23-26 However, no explanation has been
provided regarding the molecular origin of the interactions
favoring the appearance of such a phase.

The possibility of membrane curvature modulations in an
LR

C-like complex has recently been addressed by Schiessel et
al.27,28 Treating the electrostatic interactions in the linearized
(Debye-Hückel) limit of Poisson-Boltzmann (PB) theory,
these authors derive scaling relations between the amplitude of
membrane curvature undulations, bending rigidity, and surface
charge density. Their model does not allow for lipid mobility
within the membrane plane, treating the bilayer as a (flexible)
surface of uniform charge density and elastic properties. In
addition, the membranes are treated as transparent with respect
to the electric field. For lipid bilayers of typical bending rigidities
(κ ≈ 10kBT), the amplitudes are found to be quite small, on the
order of 1 Å. The authors did not consider the stability of
membrane corrugation with respect to thermal curvature fluctua-
tions.

2. Theory

We model the LR
C complex as an ordered array, periodic in

the x,y plane, and translationally invariant along thez axis,
parallel to the axial direction of the DNA molecules (see Figure
1). Suppose there areN+ cationic lipids,N0 helper lipids, and
M DNA (phosphate) charges in an arbitrary, large portion of
the complex. The structure and free energy of the complex
depends on two intensive composition variables, namely, the
average mole fraction of charged lipidφ ) N+/(N+ + N0) and
the ratioF ) N+/M between positive (lipid) and negative (DNA)
charges. (We assume that the cross sectional areas per CL and
HL are equal,a, so thatφ is also the area fraction of charged
lipid in the bilayer.) All other composition variables are assumed
to be fixed, in particular, the salt concentration in the bulk
solution (dictating a Debye screening lengthlD ) 10 Å). In
principle, at equilibrium,φ and F dictate all of the structural
characteristics of the complex, such as the interaxial distance
between neighboring DNA molecules,d, the interbilayer
distance,h, and the thickness of the lipid bilayers,w. Ignoring
the electrostatic coupling between charged surfaces belonging
to the same bilayer,w does not enter our model. This assumption
holds whenεoil/εwater , w/lD with εoil ≈ 2 and εwater ≈ 80
denoting the dielectric constants within the hydrophobic (“oily”)
interior of the membrane and the aqueous solution, respec-
tively.29 Typically, lD ≈ 10 Å and w ≈ 40 Å, ensuring the
fulfillment of the above inequality. Note, however, that the
bilayer thickness plays an important role in determining the
bending rigidityκ. Finally, both experimentally7 and theoreti-
cally12 it was shown that the thickness of the water gap,h, is
essentially independent ofφ, for all relevant compositions.
Consistent with this finding, we shall useh ) 26 Å, thus setting

Figure 1. (a) Schematic illustration of the lamellar (LR
C) lipid-DNA complex. (b) Illustration of the complex (quarter) unit cell.
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the DNA-membrane minimal distance to 3 Å, corresponding
to the thickness of the thin hydration layer separating the lipid
and DNA charges, (the diameter of double-stranded DNA is
≈20 Å). The DNA molecules are modeled as cylindrical rods
with a radiusR ) 10 Å. We assume DNA (double) strands to
be uniformly charged on their surface with a charge densityσ-

) e/2πRl ≈ 0.15Cm-2, corresponding to an average distance
between charges along the B-DNA axis ofl ) 1.7 Å, with e
denoting the elementary charge. The validity of this approxima-
tion has previously been discussed.12,15

We assume that prior to complex formation the lipid bilayer
is symmetric (comprised of two identical leaflets) and therefore
planar. Furthermore, the two-dimensional (2D) lipid mixture is
assumed to behave ideally. Upon complex formation with DNA,
neither the uniform lipid composition nor the planarity of the
membrane are preserved. From the symmetry of the complex
in Figure 1, it follows that both the local composition and
curvature profiles are functions ofx. Hereafter, we shall define
a unit cell of the complex as the region of dimensionsd × h ×
lz, encompassing the region bounded between two adjacent DNA
strands (d alongx) and two apposed bilayers (h0 alongy), and
an arbitrary length along thezaxis which later, in the numerical
calculations, we set tolz ) 1 Å. The composition and curvature
profiles, defined within the unit cell, will be denoted byη(x)
and c(x), respectively. The curvature profile is equivalently
specified byh(x) the local distance between the surfaces of
apposed bilayers. All of our calculations are performed per unit
cell of the complex, implying that we cannot account for
modulations of length scale larger thand which, we believe,
are totally irrelevant. Another convenient structural characteristic
is the contour length,lm, along the membrane interface,
extending from one DNA to the next;lm g d, with the equality
holding for a perfectly planar complex. Becauselm is propor-
tional to the number of lipid molecules within a unit cell, it is
a constant with respect to variations inc(x) and is therefore
convenient computationally.

Using fc ) fc(φ, lm, h) to denote the free energy per unit cell,
we express this functional as a sum of four terms

The first term here is the electrostatic energy, withε denoting
the dielectric constant of water;ε ) ε0εr, and we shall assume
εr ) 78, whereasε0 is the permittivity of vacuum. The reduced
electrostatic potential isψ ) eæ/kBT, kB is Boltzmann’s constant,
T is the temperature, andæ ) æ(x, y) is the local value of the
electrostatic potential. The second term accounts for the
translational (“mixing”) entropy of the mobile ions in the
complex interior, relative to their entropy in the bulk solution,
with n( ) n((x, y) denoting the local concentrations of the
mobile electrolyte ions andn0 their bulk concentration (we
assume a 1:1 electrolyte). The integration in the first two terms
extends over the volume of the unit cell. The third term accounts
for the local mixing entropy of charged and neutral lipids in

the membrane plane, with the integration extending over the
membrane surface. Locally, i.e., at anyx, the lipids are assumed
to be ideally mixed,η ) η(x) denoting the local composition.
The local lipid composition must satisfy the conservation
constraint: lzlmφ ) ∫s η ds.

The free energy functional consisting of the first three terms
has already been applied in a comprehensive analysis of the
perfectly planar LR

C complex,12 as well as in the study of
protein adsorption.19 The fourth term in eq 1 is new, accounting
for the curvature deformation energy of the (locally) cylindri-
cally bent lipid monolayers. We assume that the bending rigidity
of the mixed layer,κ, is the same for pure CL and HL layers
and is thus also independent of the CL/HL ratio. This assumption
is most reasonable for lipids of similar chain length. On the
other hand, the spontaneous curvaturec0 is generally rather
sensitive to the nature of both the tail and the head of the lipid
constituents and is thus a more sensitive function of the lipid
composition. Following previous analysis, we use the linear
interpolation dependence30,31c0(η) ) c0

c + η(c0
c - c0

h), wherec0
c

and c0
h are the spontaneous curvatures of the cationic and

helper lipids, respectively.
The equilibrium characteristics of the complex, including the

membrane and composition profiles and its free energy, are
determined, for any givenφ, h, andd (or lm), by the simultaneous
minimization of fc with respect ton((x, y), η(x) and h(x) (or
c(x)) subject to the charge conservation condition∫η(x) dx )
lmφ. Although possible, this multidimensional minimization
yields a set of equations whose numerical solution is quite
impractical. We shall thus adopt a somewhat less general, yet
similarly informative, procedure and determine the equilibrium
fc in two stages. We shall first minimizefc for a given curvature
profile h(x) and then optimize it with respect toh(x). The first
minimization step yields the usual Boltzmann distributions for
n((x, y), which upon substitution into Poisson’s equation yield
the PB equation

with lD ) (ε0εrkBT/2n0e2)1/2 denoting the Debye screening length.
The minimization (with respect toη(x)) yields the additional
equation

where λ is the Lagrange multiplier conjugate to the charge
conservation constraint andψs is the reduced potential at the
membrane surface. Equation 3 may also be regarded as the
condition for constant electro-chemical potential of the charged
lipid (here given byλ) everywhere in the membrane. This
equation, together with Gauss’ law

represents the boundary condition for the electrostatic potential
on the membrane surface (boundary V in Figure 1b) for a
surface with charge densityσ+(x) ) eη(x)/a. In eq 4,n̂ is the
unit vector normal to the boundary (pointing into the dielectric
medium). Equations 2-4 must be solved self-consistently,
yielding the electrostatic potential and the composition profile
corresponding to the prescribed curvature profile. The other
boundary conditions (pertaining to I-IV in Figure 1b) are
standard, as in ref 12.

fc ) ∫
V

ε

2
(∇ψ)2 dV

+ kBT∫
V

[n+ ln
n+

n0
+ n- ln

n-

n0
- (n+ + n- - 2n0)] dV

+
kBT

a ∫
s

[η ln
η
φ

+ (1 - η) ln
1 - η
1 - φ] ds

+ 1
2∫

s

κ(c - c0(η))2 ds (1)

lD
2 ∇2ψ ) sinhψ (2)

ln
φ(1 - η)

η(1 - φ)
- ψs - λ ) κ{c - [c0

cη + c0
h(1 - η)]}(c0

c - c0
h)

(3)

σ+(x) ) -
εkBT

e
∇ψs·n̂ (4)
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The next stage involves the determination of the curvature
profile, h(x). In principle, one could perform a general shape
minimization, expressingh(x) as a Fourier sum and evaluating
the amplitudes of different wavelength membrane undulations.
In the LR

C complex, the interaxial, DNA-DNA, distance sets
the natural wavelength in the problem equal tod. We shall thus
ignore contributions from any other wavelength and expressh(x)
as

and determine the optimal amplitude of membrane corrugation,
A0, by minimizing fc. Recall thath0 ) h(x ) 0) - A0 ) 26 Å
is the interlamellar spacing in the planar complex.

The numerical procedure for solving the PB equation32-34

and for evaluatingλ,ψ has been described in previous work.12

We note that the validity of this mean field approach has also
been extensively discussed elsewhere.12,15

Membrane surface corrugation, i.e., periodic curvature de-
formations, can lead to registry between DNA monolayers in
different galleries, provided their amplitude is larger than those
of thermal membrane undulations. In determining the extent of
thermal membrane undulations, we follow the ideal gas analogy
of Helfrich and Servuss for the steric interaction in the lamellar
phase of lipids.35,36 In terms of the Monge representation,u(x,
z) gives the vertical displacement of the surface from a plane
reference state. The amplitude of membrane thermal fluctuations
depends on the material constantκ but also on the area of the
undulating membrane patch. For a membrane patch of areaLd

2,
the mean square displacement of membrane height due to
thermal fluctuations (of a tensionless membrane) is〈u2〉1/2 )
(kBT/4π3k)1/2Ld. Melting of 3D order in the lamellar complex
is expected to take place when the thermal undulations corre-
sponding to a membrane patch of areaLd

2 ≈ d2 are on the order
of the membrane corrugation amplitudeA0. Thus, registry
between galleries is expected when

3. Results

3.1. Free Energy.The effect of membrane corrugation on
the complex free energy is greatest when the membrane rigidity
is small, so that the membrane can adjust its geometry to fit
the apposed DNA molecule, achieving better electrostatic
contact, at a relatively small elastic energy cost. Figure 2a shows
the complex free energyfc as a function of membrane composi-
tion φ, for a soft membrane whose (monolayer) bending
modulus for both lipids isκ ) 1kBT, and spontaneous HL and
CL curvatures arec0

h ) c0
c ) 0. All results are shown for 1 Å

length of DNA. The complex free energyfc is shown as a
function of membrane compositionφ, for three values oflm.
For comparison, we showfc for a complex in which the
membrane is kept planar.

As has previously been shown,12 in all cases, a minimum in
the free energy is found, corresponding closely to the isoelectric
point of the complex. Moreover, we find that the difference
between a complex with relaxed (corrugated) membranes and
a complex with constrained (uncorrugated-planar) membrane
is always largest at the isoelectric point. Close to the isoelectric
point, most of the counterions are already released into the bulk
solution. Therefore, further gain in free energy can only be
achieved by better charge and spatial matching of the apposed

surfaces to optimize the electrostatic interaction energy. Thus,
at the isoelectric point, the effect of corrugation (i.e., better
fitting of apposed surfaces) on the complex free energy is most
substantial. The largest gain in free energy due to corrugations
is ≈0.25kBT. The gain from this added degree of freedom for
a unit cell the size of DNA’s persistence length,lp ≈ 50 nm, is
therefore rather large (≈125kBT).

When more rigid membranes form complexes, the gain in
electrostatic energy is expected to be much smaller, because
the penalty for bending is large; the membranes bend only
slightly, and consequently, the free energy is not substantially
changed. Figure 2b shows the complex free energy as a function
of membrane compositionφ, for membranes withκ ) 10kBT
and for the same values oflm as in Figure 2a. Here we choose
c0

h ) 1/100 Å, c0
c ) 0, modeling a mixture of, e.g., DOPC

(dioleoylphosphatidylcholin) and DOTAP (dioleoyltrimethy-
lammonium propane). The gain in free energy following
corrugation is only≈5kBT for a unit cell of lengthlp. Similar
results were obtained for membranes where the bending rigidity
wasκ ) 10kBT andc0

c ) 0, as before, but withc0
h ) -1/25 Å

(close to the elastic constants measured for DOPE37-39).
Allowing for LR

C complex corrugation adds somewhat to its
stability as compared with the HII

C phase. Figure 3 shows the
complex free energy as a function of membrane composition,
φ, for soft lipid membranes (κ ) 1kBT) and lm ) 58 Å (for
which the isoelectric point is atφ ≈ 0.35). For comparison, we
show the free energy of a complex where corrugations are
suppressed and the membranes are flat. In addition, we show
the free energy of the competing HII

C phase for the same
number of lipids as in the LR

C phase. The free energy for this
phase has previously been derived using a similar model to that
presented here for the LR

C complex, including the elastic,
electrostatic, and lipid demixing degrees of freedom.9,15Because,
in general, the spatial corrugations lower the free energy of the
lamellar complex, we can expect spatial modulations to play a
role in stabilizing the LR

C phase with respect to the HII
C phase.

This is reflected in the values ofφ at which the free energy
curves for the LR

C and HII
C cross when corrugations are allowed

h(x) )1
2
A0 cos(2πx/d) + h0 (5)

A0 > x kBT

4π3
κ
d (6)

Figure 2. Free energy of LR
C complex as a function ofφ for lm ) 73

Å (i), 43 Å (ii), 23 Å (iii). In a, κ ) 1kBT andc0
h ) c0

c ) 0; (b) κ )
10kBT, c0

h ) 1/100 Å, andc0
c ) 0. The full line corresponds to the

corrugated complex, whereas the dashed line to the fully planar one.
All energies are given per 1 Å length of DNA.
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and when they are forbidden. The region alongφ for which the
hexagonal complex is more stable than the lamellar one is
narrower for the corrugated complex. We expect the phase
boundary to follow this trend as well. The region for which the
hexagonal complex will be found to be stable is expected to
prevail for a more limited range ofφ’s.

3.2. Corrugation Amplitude. Next we consider the corruga-
tion amplitude as determined from minimizing the free energy.
We first consider a soft membrane,κ ) 1kBT, with c0

h ) c0
c )

0. The extent of corrugation at equilibrium,A0, as a functionlm
for several values ofφ is shown in Figure 4a. The unshaded
area corresponds to the range given by eq 4, representing
corrugations that are stable with respect to thermal undulations.

The maximal corrugation occurs for membranes of lowφ.
When the membrane is of low charge (hence high mismatch
with the DNA’s charge densityσ- ≈ 0.6e/a), the proper
matching of the DNA molecule and membrane becomes more
important for obtaining maximal counterion release. This
matching can be achieved both by charge density modulations
and by corrugations. Therefore, we can expect that, if the cost
of bending is not too great, the highest modulation will be

observed for the membrane of lowerφ. In all cases, a maximum
in the corrugation is found at a certainlm. This lm closely (but
not exactly) matches the isoelectric point. At the isoelectric
point, the proper release of counterions to solution ultimately
depends on the geometrical fit between macroions. It is also
clear from Figure 4a that a substantial corrugation is expected
for only a limited intermediaterange of lm’s, for which the
corrugation is higher than the expected membrane thermal
undulations.

We next consider a more rigid membrane,κ ) 10kBT, with
c0

h ) 1/100 Å andc0
c ) 0. Figure 4b shows the extent of

corrugation,A0, as a functionlm for the sameφ values as shown
in Figure 4a. Again, the unshaded area corresponds to the
inequality in eq 4. As expected, for all values ofφ, A0 is smaller
than for the soft membranes. The maxima are somewhat shifted
to higherlm values. This can be easily understood. Becauseκ

is substantially higher, the elastic deformation energy cost is
higher. Whenlm is larger, the (average) curvature is smaller
for a certainA0. It follows that the membranes can deform at a
relatively lower energy cost whenlm is larger. Again, it can be
seen that even when the membranes are stiff, stable corrugations
may persist for a certainlm range. This is due to the fact that
both the thermal undulationsand the corrugations are smaller
for membranes of higherκ. These two effects compensate each
other to a large extent.

A clear demonstration of the importance of the elastic
contribution to the modulation is a comparison of three different
membranes, all with the sameφ ) 0.25. In Figure 5, three
membrane types are compared, a soft membrane (κ ) 1kBT, c0

h

) c0
c ) 0), a more rigid membrane with two lipid types of

(nearly) vanishing spontaneous curvature (κ ) 10kBT, c0
h )

1/100 Å andc0
c ) 0) and a similarly rigid membrane with a HL

characterized by a high negative spontaneous curvature (κ )
10kBT, c0

h ) -1/25 Å, andc0
c ) 0).

Because the membranes corresponding to the three cases in
Figure 5 bear a rather small charge density (φ ) 0.25), the effect
of the uncharged lipid species is considerable. For membranes
of a small bending rigidity, the modulation will be large, as
expected. More complex is the case where the bending rigidity
is non negligible (κ ) 10kBT). In this case, there is a pivotal
role to the spontaneous curvature of the lipid species. As can
be seen, in the case where the HL has a high negative curvature
(c0

h ) -1/25 Å), the corrugation is suppressed completely (for
φ ) 0.25), whereas it is substantial (A0 ≈ 2 Å) when the HL
has a spontaneous curvature ofc0

h ) 1/100 Å. The qualitative
reason is as follows. Because charged lipids tend to migrate
toward the interaction zone with the DNA, the uncharged lipids

Figure 3. LR
C complex free energy as a function ofφ for lm ) 58 Å

with allowed corrugations (dashed) and suppressed corrugations (dot-
ted). Also shown is the free energy of the hexagonal complex for the
same amount of lipid (full line). In all cases,κ ) 1kBT andc0

h ) c0
c )

0. The arrows mark the points of intersection between the free energy
of the lamellar and hexagonal complexes.

Figure 4. A0 as a function oflm for (a) κ ) 1kBT andc0
h ) c0

c ) 0; (b)
κ ) 10kBT, c0

h ) 1/100 Å andc0
c ) 0. In a and b, the three curves

correspond to:φ ) 0.25 (full), 0.5 (dotted), and 0.7 (dash-dotted).
The unshaded area corresponds to eq 4. In all cases, the calculated
values are designated by full symbols. The lines are guides for the
eye. The arrows indicate the isoelectric point for each curve.

Figure 5. A0 as a function oflm for φ ) 0.25. The three curves
correspond toκ ) 1kBT, c0

h ) c0
c ) 0 (solid line); κ ) 10kBT, c0

h )
1/100 Å, andc0

c ) 0 (dash-dotted);κ ) 10kBT, c0
h ) -1/25 Å, andc0

c

) 0 (dashed). In all cases, the calculated values are designated by full
symbols. The lines are guides for the eye.
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are expelled to the region outside the interaction zone. However,
the monolayer area outside the interaction zone is ofpositiVe
curvature, so that placing a HL with a negative spontaneous
curvature in that region is unfavorable. Ultimately, the system
tends to suppresses corrugations when the spontaneous curvature
of the HL is highly negative, and the bending rigidity is
substantial.

3.3. Charge Density Modulations.It has previously been
shown that charge density modulations can contribute substan-
tially to lowering the complex’s free energy.12 Here, charge and
curvature modulations are strongly coupled to each other. This
is because each lipid species has combined elastic (bending and
spontaneous curvature) and electrostatic (charged or uncharged)
properties. At equilibrium, the lipid arrangement (corrugation
and charge density modulation) will be determined by the
optimum of the free energy.

Figure 6a shows the charge density modulationη as a function
of the x coordinate between two adjacent DNA molecules in
the same gallery for a rather small membrane length,lm ) 28
Å and φ ) 0.7 (very close to the isoelectric point). The
modulations are shown for three different membranes, corre-
sponding to the ones in the previous section. In general, the
trend toward charge matching on the DNA and membrane is
observed (recallσ- ≈ 0.6e/a) at the point of closest approach
between the membrane and DNA molecules (i.e., atx ) 0 and
x ≈ 28 Å). At this distance, the effect of the electrostatic
interaction is strongest. Thus, charge matching of apposed layers
is most effective at this point, enabling a maximal number of
counterions to be released from the gap.

The charge density modulation is largest when the membranes
are most soft, which also corresponds to the case of largest
corrugation. In this case, the importance of charge matching
(hence lowering of the disjoining pressure) is greatest, since
the membrane is wrapped more tightly around the DNA (A0 ≈
2.5 Å for the soft membranes vsA0 ≈ 0.5 Å for the stiff
membranes).

More intricate is the case for complexes formed of rather
stiff membranes (κ ) 10kBT), where the uncharged lipid
molecules have a positive spontaneous curvature (c0

h ) 1/100
Å). For these, we find that the charge density modulations do
not come to a maximum at the point farthest from the interaction
zone, i.e., at the midplane between DNA molecules (solid line
in Figure 6a). In general, when membranes are stiff, the elastic
contribution to the free energy becomes more dominant.
Furthermore, in this case, the uncharged lipid molecules possess
a (rather low) positive spontaneous curvature, so that elastically
it favors the midplane, away from the DNA. However, the same
(neutral) lipid species also tends to be drawntoward the DNA
molecule in order to achieve better electrostatic charge matching
between the DNA and membrane (at a certain elastic penalty).
The optimum of the two contributions, electrostatic and elastic,
which in this case tend to oppose each other, tends to suppress
the charge density modulation. The results show that maximum
charge density is found where the membrane ismost flat,
reflecting c0

c ) 0. The uncharged species resides both in the
negatively curved region (i.e, favorable electrostatic interaction,
unfavorable elastic penalty) and in the positively curved area
close to the midplane (i.e., favorable elastic interaction, unfavor-
able electrostatic interaction).

Whenlm is larger, the resulting modulation is somewhat less
complex. Figure 6b shows the charge density modulations for
the same three membrane types as before. This timeφ ) 0.5
and lm ) 43 Å, closely corresponding to the isoelectric point.

The charge density modulations are smallest for soft mem-
branes, where corrugations are also more prominent. Charge
matching, again, plays an important role in determining the
charge density in the proximity of the DNA. Because the
wrapping of membrane around DNA for a substantial length of
x implies a larger interaction zone between DNA and lipid, a
larger region is expected to fulfill the charge matching tendency,
and thus the change in charge density is the smallest.

When the membranes are more rigid, i.e.,κ ) 10kBT, the
spontaneous curvature of the HL becomes more important in
determining the charge density modulations. Figure 6b reveals
that the modulations are largest forc0

h ) 1/100 Å. For this
case, both the electrostatic and elastic considerations to lowering
the free energy coincide. While the helper lipid is expected to
be (electrostaticaly) expelled from the interaction zone between
DNA and lipid, it also has a (small) positive spontaneous
curvature, which matches the curvature of the noninteracting
region, i.e., close to the midplane.

4. Concluding Remarks

In this study, we demonstrated the importance of the coupling
between curvature deformation, lipid composition, and ensuing
surface charge density. This coupling is particularly significant
when considering the interaction of fluid lipid membranes with
apposed (charged) macromolecules such as proteins and DNA.
The approach we use here for determining the free energy
enables us to take into account this coupling in a self-consistent
manner. For the system of interacting DNA and mixed lipid
bilayers, we predict that the curvature and electrostatic contribu-
tions to the free energy will favor the formation of corrugated
LR

C complexes. Not surprisingly, the corrugations are predicted
to be particularly large when the membranes are soft (yet not
soft enough so as to favor the HII

C phase). Furthermore, we find
that the maximal corrugation can be found close to (but not
exactly) at the isoelectric point. Our results suggest that these
corrugations could be stable with respect to thermal undulations

Figure 6. η as a function ofx for (a) φ ) 0.7 andlm ) 28 Å; (b) φ

) 0.5 andlm ) 43 Å. In a and b, the three curves correspond toκ )
1kBT, c0

h ) c0
c ) 0 (dashed);κ ) 10kBT, c0

h ) 1/100 Å, andc0
c ) 0

(solid); κ ) 10kBT, c0
h ) -1/25 Å, andc0

c ) 0 (dotted).
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for a certain range of membrane compositions and DNA/Lipid
ratio. This may lead to a locking of DNA strands in adjacent
galleries.
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